Perspective

CS418 Computer Graphics
 John C. Hart

Graphics Pipeline

Graphics Pipeline

Foreshortening

Projections squash receding surfaces

Andrea Mantegna
The Lamentation over the Dead Christ

Zollner Illusion

Orthographic Projection

(right,bottom,-far)
Viewing Coordinates

Isometric Projection

- Foreshortens by using z-coord to shear x and y coordinates

$$
\left[\begin{array}{c}
x_{\text {clip }} \\
y_{\text {clip }} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & & 1 & \\
& 1 & -1 & \\
& & 0 & \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
x_{\text {view }} \\
y_{\text {view }} \\
z_{\text {view }} \\
1
\end{array}\right]
$$

- Used in videogames to place sprites

$$
\left[\begin{array}{c}
x_{\text {clip }} \\
y_{\text {clip }} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & & \\
-1 & 1 & 2 & \\
& & 0 & \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
x_{\text {view }} \\
y_{\text {view }} \\
z_{\text {view }} \\
1
\end{array}\right]
$$

Isometric Projection

Perspective

- Brain depends on shape constancy
- Real world objects do not resize
- Change in size due to depth
- Closer objects larger
- Farther objects smaller

© 1997 Illusionworks

Ames Distorting Room

Hering Illusion

$$
11
$$

| |

$$
11
$$

Linear Perspective

- Brain depends on shape constancy
- Real world objects do not resize
- Change in size due to depth
- Closer objects larger
- Farther objects smaller
- How large, how small?

Albrecht Durer woodcut c. 1525,
swiped from Marc Levoy’s CS48N notes c. 2007

More Durer, swiped from Fredo Durand's Art of Depiction

Linear Perspective

Homogeneous Coordinates

- Fourth homogeneous coordinate can be any non-zero value
- To find the point it corresponds to:
- multiply all four coordinates by the same value
- precisely the value that makes the fourth coordinate one
$\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right] \equiv\left[\begin{array}{l}w x \\ w y \\ w z \\ w\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right] \equiv\left[\begin{array}{c}x / w \\ y / w \\ z / w \\ 1\end{array}\right]$
- When homogeneous coordinate is zero
- Denotes a "point" at infinity
- Represents a vector instead of a point
- Not affected by translation
$\left[\begin{array}{l}x \\ y \\ z \\ 0\end{array}\right]=\left[\begin{array}{lllll}1 & & & & a \\ & 1 & & b \\ & & 1 & c \\ & & & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 0\end{array}\right]$

Linear Perspective

Perspective Distortion

(Using a later version of Perspective matrix that preserves depth ordering)

Parameter d

Parameter d

To change degree of perpective distortion, need to change distance from eye to scene,
...by moving scene closer or farther to eye,
... along z axis in viewing coordinates

Stereo

Stereo

- Disparity - differences (in image distance) between similar features images (varies with depth)
- Stereo methods
- Cross eye \& wall eye
- Anaglyph (colored glasses)
- Polarized glasses
- Field sequential using alternately blinking lcd's in the glasses
- Autostereograms (barrier strip or lenticular)

Rotation v. Shear

Sheared
 Perspective

- Shear first, then perspective
- Shear should preserve plane distance f from eyepoint

- Shear should move eyepoint d units perp to view direction
- Translate $+f$ in z direction (remember view in $-z$ dir)
- Shear the point $(0,0, f)$ to the point (-d,0,f) (opposite shear)
- Translate back, by (0,0,-f)
- Apply perspective

